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A method is developed for calculating second and third electron affinities of atoms. The method is based on the use of Slater 
orbitals, but orbital exponents are found empirically for each element by using known values of I and A for that element. A2 is 
found for 0, S, and Sc and A2 and A, for N, P, and As. The results are tested by applying the Born-Mayer ionic model for bonding 
to a number of MX solids. As expected, MX solids with CN = 6 give good results for cohesive energies, using the ionic model 
and the new values of A2 and A,. Solids with CN = 4 give poor results, showing much greater covalent bonding. 

Introduction 
The first electron affinities, AI,  are now known for most of the 

elements.’ However, all multiply charged monatomic anions are 
unstable in the gas phase. Hence values of the second and third 
electron affinities, A2 and A3, are not available by direct exper- 
iment. Still there are good reasons to believe that anions such 
as 0” or N3- may exist in the solid state, in so-called ionic solids. 

The best experimental approach to higher electron affinities 
is to assume that the anion does exist in the solid and to apply 
the Born-Mayer ionic model to calculate the cohesive energy of 
the solid.2 

MX(s) = M(g) + X(g) moo (1) 

Comparison with experimental values of Moo then enables a 
calculation to be made of A2 or A2 + AS. 

The best results of this kind are for the alkaline-earth-metal 
oxides, MgO to BaO. A careful analysis of these solids leads to 
an A2 for oxygen of -183 kcal/mol.’ Of course, if the solid is 
not as ionic as assumed, this method will lead to poor results. 

The Born-Mayer model uses point charges, but this restriction 
can be removed. Cohen and Gordon used a model with the 
electron density for each ion obtained from single-center atomic 
orbitals! Their estimate of A2 for oxygen was -169 f 7 kcal/mol. 

Ab initio quantum-mechanical calculations of negative electron 
affinities face a fundamental problem. The lowest energy of the 
system will place the added electron at  infinity, and give an A2 
or A3 of zero. Nevertheless, the Hartree-Fock energies of 02- 
and other doubly negative ions have been ~a lcu la t ed .~  This is 
possible by applying the constraint that all of the valence shell 
p orbitals have the same radial function. Combining the HF 
energy of 02- with that of the oxygen atom6 gives AI  + A2 = 
-189.5 kcal, with the experimental value of AI being 33.7 kcal.’ 
Since this calculation does not include the very large difference 
in correlation energies between 0 and 02-, all we can say is that 
A2 is less negative than -223 kcal. 

Even for the most favorable case of oxygen, the best value to 
use is not clear. For the other nonmetallic elements, the situation 
is even worse. But it seems to be imperative that we have reliable 
values of A2 (and A3)  for these elements, if we wish to understand 
chemical bonding in the solid state. Since purely theoretical, or 
purely experimental, results are not available at  this time, the 
possibility of a semiempirical method should be considered. 

For all the important elements, we have reliable values of A i  
and of 11, I*, I,, ,.., the suaxssive ionization potentials. The purpose 
of this paper is to find values of A2 and A3 by a suitable ex- 
trapolation from the known data. We will restrict ourselves to 
the elements 0, N, S, P, Se, and As, the most likely candidates 
to form multiply charged ions. They also have the great advantage 
that only electrons with the same values of n and I ,  for each atom, 

(1 )  Hotop. H.; Lineberger, W. C. J .  Phys. Chem. Ref. Dura 1985,14, 731. 
(2) Born, M.; Huang, K. Dynomical Theory ojCrysral Lortices; Oxford 

University Press: London and New York, 1954. 
(3) Cantor, S. J .  Chem. Phys. 1972, 59, 5189. 
(4) Cohen, A. J.; Gordon, R. G. Phys. Reu. 1976, 131A, 4593. 
(5) Hurinaga, S.; Hart-Davies, A. Phys. Reu. 1970, A8, 1734. 
( 6 )  Clementi, E.; Roetti, C. Ai. Dora Nucl. Dura Tables 1974, 14, 177. 

need to be considered, if we assume that the added electrons simply 
fill up the subshell. All the electrons in the same subshell will 
have the same radial distribution. 

The usual way of treating successive values of I for such cases 
is to write a quadratic equation 

(2) 
where N is the number of similar  electron^.^ Unfortunately, this 
equation does not work well, if we attempt to continue it to 
negative ions. For example, it predicts AI for fluorine to be -3.3 
kcal, instead of the correct +78.4 kcal. 

The reason for the failure is easy to find. The parameter u 
represents a core integral, and b, the valence shell interelectronic 
repulsion  integral^.^ But these integrals are functions of the orbital 
exponent {that occurs in the radial part of the wave function. 
And { is not constant, but decreases as N increases. 

This suggests a method based upon the use of Slater orbitals? 
which have the property of changing {as N changes. The Slater 
orbitals used in this work are of the form 

E = Eo + UN + bN2 

(3) 

where n = 2, 3,4.  The orbital exponent { = (2 - s) /n* ,  where 
s is the screening constant and depends on the number of electrons. 
The quantum number n* is equal to n, except for n = 4, where 
n* = 3.7. Z is the nuclear charge, and C is a normalization 
constant. 

Slater’s rules enable s to be calculated at  once, and hence {. 
The ionization potential for any orbital in any atom in any stage 
of ionization can then be readily found.* The answer will be only 
approximate and is not nearly good enough for our purposes. 
Instead, a method will be described next that gives highly accurate 
results, for cases where the answer is known. The method selects 
a particular atom and uses its known values of I and A to calculate 
values that are adjacant, and perhaps unknown. 
Details of the Calculation 

The master equation is9 

I = - p / 2  + fG (4) 

where c2/2 is the kinetic energy in atomic units and -fG is the total 
potential energy of an electron in a particular orbital. Thus (4) gives the 
orbital energy, with sign changed, which is equal to I by Koopman’s 
theorem. This theorem is in error by the reorganization energy, but this 
is compensated for by using experimental values of I to calibrate (4). The 
same equation also applies for electron affinities, by simply replacing I 
by A. 

The general procedure is to start with the neutral atom and to cal- 
culate its orbital exponent, p ,  by Slater’s rules. Then li is used in eq 
4 to calculate G O .  Next proceed to Ai and use (4) to calculate t for the 
anion. First, however, G must be recalculated, since it differs from Go 
by the potential energy of the second electron interacting with the first, 
if the spins are the same. If the spins are opposite, there will also be 
changes in exchange energy. 
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The change p - 5 = At, is a function of Go - C, since the change in 
shielding responsible for A t  is due to the difference in interelectronic 
repulsion. 

The next step is to use (4) to calculate A2, after correcting G again 
as before. The change in G fixes the value of {for the doubly charged 
anion, from the previous result for At. Thus everything in eq 4 is known, 
except the unknown Al. The value of A3 can also be found by repeating 
the procedure for A2. 

The changes in G are readily calculated from the cases of interest, 
since they are simply Coulomb and exchange integrals for two electrons 
in two 2p, 3p, or 4p orbitals. The formulas for calculating thesc integrals 
for Slater type orbitals are found in the literature.I0 

An example will be given in more detail. Let us find A2 for oxygen. 
For 0, p is found to be 2.275 by Slater's rules. Il for 0 is 13.62 eV, 
or 0.501 in atomic units of energy. 

11 0.501 -2.588 + 2.275G0 ( 5 )  

A,  5 0.054 -t2/2 + {(G'- 0.3283) (6) 
After one solves for Go = 1.3578, a small correction, -0.0024, is made 
to get G'. The reason for this is described in the Appendix. The quantity 
0.3283 in (6) comes from Jxy - Kxy = 0.32833 where J and Kxy are the 
Coulomb and exchange integrals for two electrons in diferent 2p orbitals, 
and with the same spin. 

Solving the quadratic equation (a), we find { = 2.000 for 0-, so that 
A{ = -0.275. Slater's rules would give A t  = 0.175. The addition of a 
second electron to form 02- also produces a change in G equal to J, - 
Kxy Therefore A t  is the same and { for 02- is 1.725. We can now &nd 
A2. 

A2 = -1.4878 + 1.725(1.0267 - 0.3283) = -0,283 au = -178 kcal 
(7) 

As a check on the transferability of A{ = -0.275, we calculate A,  for 
fluorine. As before, Go is found from 1, for F. p = 2.60 for F, and { 
= 2.325 for F. This gives A ,  = 0.123 au, or 77.2 kcal, compared to the 
experimental value of 78.4 kcal. Using Slater's rules would give A{ = 
-0.175, and A, = 4.5 kcal. 

An alternative application of eq 4 is to use Il and l2 to predict a value 
of I,. This was done for Ne, Ar, and Kr, as a test of the method. For 
Ne, the calculated value of I ,  is 63.48 eV, and the experimental value 
is 63.47 eV. For Ar, the calculated value is 40.81 eV, and the experi- 
mental value is 40.82 eV. The values of A{ were found to be 0.240 for 
Ne and 0.104 for Ar. These may be compared to a A t  of 0.175 for Ne 
and 0.1 17 for Ar, found by Slater's rules. 

For krypton poor results were found. I ,  was calculated to be 32.89 
eV, compared to 36.96 eV actual. Also A t  was found to be only 0.030, 
compared to 0.095 from Slater's rules. It may be recalled that for n > 
3, Slater's orbitals are not nearly as good as for the lighter elements. For 
example, effective quantum numbers, n*, are no longer integral. How- 
ever, in the case of Kr, it was found that no other value of n* gave better 
results than n* = 3.7, using eq 4. 

The problem really arises because only Is, 2p, 3d, and 4f Slater or- 
bitals are proper orbitals, orthogonal to all other orbitals of the same or 
lower n. They are also hydrogenic orbitals, so that 12/2 is the mean 
kinetic energy, as in eq 4. The 3p and 4p Slater orbitals are only good 
approximations far from the nucleus. Closer in they must be supple- 
mented by other orbitals, to make them orthogonal to the 2p orbital and 
to each other. 

They also are not hydro enic and their nominal kinetic energies are 

plemental orbitals, with high orbital exponents, would raise the kinetic 
energies to 0.500{*. This value is required by the virial theorem to find 
ionization potentials by the Slater method. 

Apparently this occurs for a 3 orbital, but not a 4p. With krypton 

found that a kinetic energy of 0.200f2 gave the bcst results. That is, I ,  
was calculated to be 36.70 eV, closer to 36.96 than any other choice for 
the coefficient. 

Accordingly, for Se and As all results were calculated from the 
modified equation 

(8) 

While the theoretical basis for (8) is greatly weakened, it can still serve 
as an empirical equation for extrapolating from known values to unknown 

only 0.2333t2 and 0.1429{, f respectively, Slater assumed that the sup- 

used as a test, the coefficient of f P in (4) was varied from 0.500. It was 

I = -0.200p + tc 

(10) Bingel, W. Z .  Nafurforsch. 1954. 94, 675. Reference 9, Chapter 14. 
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Chem. Re/. Dara 1982, I I ,  Suppl. No. 2. Electron Affinities are taken 
from ref 1. 

Table I. Electron Affinities of Nonmetallic Elements 

AI' 
A.b 

0 S Se 
33.6 48.0 46.6 

-178 -109 -98 
N P As 

AI0 1.7 17.1 18 
A26 -161 -1 12 -104 

-256 -212 -192 
a Experimental, kcal/mol. *This work, kcal/mol. 

values of I and A. Support for this statement comes from a calculation 
of Al  for CI, using (4), and Br, using (8). The values found are A l  = 
83.5 kcal and experimental A ,  = 83.5 for Cl and A, = 77.7 kcal and 
experimental A l  = 77.5 for Br. 
Results and Discussion 

Table I summarizes the results found for the higher electron 
affinities of 0, N, S, P, Se and As. The known values of A ,  are 
also included. A2 and A3 are all negative numbers, as expected. 
The relative values seem to be very reasonable. The result for 
oxygen is in the middle of the range of other estimates. 

The HartreeFock calculations allow us to calculate A I  + A2 
for several of the  element^.^,^ These may be compared to the sum 
found in the present work. 

X + 2e- = X2- A I  + A2 
A, + A l r  kcal 

0 N S P 
Hartree-Fock -189 -212 -86 -116 
present work -144 -160 -61 -95 

Since the HF numbers will become more positive when the cor- 
relation energy correction is made, the overall agreement seems 
to be good. 

The best test of the new electron affinities, of course, is to use 
them in the calculation of cohesive energies of suitable solids. This 
will be done next for some binary MX compounds. The Born- 
Mayer equation will be useda2 

(9) 

A is the Madelung constant, Z is the magnitude of the ionic 
charge, Ro is the equilibrium separation in the solid, and p is the 
constant in the repulsion term Be-RIP. 

To find p we need the molar volume, ub and the compressibility, 
p. Reliable values of are available only for a limited number 
of solids.12 Regularities in u0/B for related solids allow estimates 
to be made in other cases.13 But when Z is 2 or 3, small errors 
in these estimates can lead to large errors in the equilibrium 
potential energy, U,. 

Referring back to eq 1 for the cohesive energy, the working 
equation is 

The small difference between Moo and AHO at 298 K is ignored. 
Also, Uo is not corrected for van der Waals ene rg ie~ .~  

Table I1 contains a sampling of calculated values of Moo and 
the experimental values of AHo. The strategy is to pick one 
example of MX with the rock salt structure, coordination number 
6, and one with the sphalerite or wurtzite structure, coordination 
number 4. The evidence is very strong that the former are highly 
ionic and the latter are more c0va1ent.I~ Therefore, the ionic 

(12) Yang, W.; Parr, R. G.; Uytterhoeveu, L. Phys. Chem. Mitter. 1987, IS, 
191 

(13) Wing, H. Phys. Chem. Miner. 1978, 3, 251. 
(14) Pearson, W. B. J .  Phys. Chem. Solids 1%2,23, 103. Phillips, J. C. Rea 

Mod. Phys. 1970, 42, 317. 
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Table 11. Commrison of ExDerimental and Theoretical Values for Table 111. Properties of the Common Monatomic Anions Based on 
Slater Orbitals 

&Ua Rhb P 
F 0.46 1.36 2.323 
c1- 0.84 1.81 1.890 
Br- 1.13 1.95 1.869 
02- 0.61 1.40 1.724 
S2- 1.03 1.84 1.530 
Se2- 1.40 1.98 1.507 
N 3- 0.98 1.71 1.079 
P3- 1.41 2.12 1.137 
As3- 1.89 2.22 1.119 

OCalculated radius of maximum electron density for the outer or- 
bital, in A. bPauling ionic radii, in A. 'Values found in this work. 

the sum of R,,, for the anion and for the cationI6 is only 1.15 
A. 
Concluding Remarks 

In summary, it appears that the numbers shown in Table I are 
very good approximations to the energy changes due to adding 
more than one electron to an atom. However, no claim is made 
that they have been rigorously derived and are highly accurate. 
In spite of the greater electronegativity of oxygen, it is much more 
difficult to form 02- than S1- or W. This results from the smaller 
value of R ,  for O", which means that interelectronic repulsions 
are much greater. Similar remarks apply to N+ compared to Ps 
and As'. In other language, 0 and N have a small charge 
capacity because of their sizes." Also 0 and N are much harder 
than the other members of their families.I8 
Appendix 

While it is convenient to write the potential energy as -{C in 
eq 4, it is not strictly true in the case of the interaction of two 
electrons in orbitals with different values of {. For example, in 
the oxygen atom, { = 2.275 for the 2p electrons and r = 7.70 
for the Is electron, using Slater's rules. The Coulomb integral 
between these two orbitals is readily found to belo 

the Cohesive Eiergies of MX Solids 
MX CN AH"' U n o '  MX CN AH"' A E n b  

CaO 6 254 251 LaN 6 289 285 
ZnO 4 174 130 GaN 4 206 155 
CaS 6 222 193 CeP 6 -26W 242 
ZnS 4 147 86 InP 4 155 -27 
Case 6 185 172 CeAs 6 247 224 
ZnSe 4 125 57 GaAs 4 156 -65 

'Experimental values, kcal/mol. Data taken from ref 1 1 .  
bTheoretical values from ionic model, eq 1 1 .  Values for Ro from: 
Wyckoff, W. G. Crystal Structures; Interscience: New York, 1970; 
Vol. 1, Chapter 3. CInterpolated from data for CeN, AHo = 292 
kcal/mol, and CeAs, AH" = 247 kcal/mol. 

model should work well for CN = 6, and should give values of 
Mo that are too small for CN = 4. 

The results in Table I1 are in a m r d  with expectations, assuming 
that the values of A2 and A3 used are reasonably good. The CN 
= 6, or ionic, compounds give calculated values of Moo that are 
in good agreement with experimental Lwo. Except for LaN and 
CaO, the difference of 10-20% is what might be expected from 
covalent bonding. Apparently the first two are highly ionic. 

The MX compounds with CN = 4 all give theoretical values 
that are much too small, requiring a great deal of covalent bonding. 
Even ZnO requires covalent bonding amount to 25% of the total 
cohesive energy. The negative values found for InP and GaAs 
show that the ionic model is completely inappropriate. 

In the case of the compounds in Table 11, and in many others, 
the choice of CN = 4 or 6 comes entirely from the sum of the 
ionization potentials in eq 11. For example, ZI + Z2 + Z3 = 1215 
kcal for indium, but only 842 kcal for cerium. Thus it is too costly 
to form In3+. 

The method used to obtain A2 and A3 shows that they are 
properties of gas-phase ions. But the results in Table I1 seem to 
show that there is little effect on going to the solid state. While 
this result is quite surprising, it is the same one found earlier when 
the ionic model was applied to the alkali-metal halides. 

We may also infer that the Slater orbitals formed by changing 
the orbital exponents in the wave functions in (3) are good rep- 
resentations of the outermost parts of the ionic wave functions 
in the solid state. It is instructive to calculate the radius of 
maximum radial charge density, R,,, = n / { ,  for the anions we 
have been discussing. 

Table 111 shows the values of R,,, Rh, and {for the common 
monatomic anions. The values of {are those found in this work, 
and n = 2,3 ,  or 4. The R,, numbers are always much less than 
the conventional ionic radius, Rion (As3- is something of an ex- 
ception). The reason for this has been given by Slater.I6 Since 
the overlap of filled shells can only lead to repulsion, it is ad- 
vantageous to keep the regions of maximum electron densit well 
separated. For example, in CaO the value of Ro is 2.41 1, but 

(15) Reliable compressibility data were used for the results in Table 11, 
except for ionic Case, LaN, CeP and CeAs, where no data were 
available and models had to be used. 

(16) Slater, J. C. J .  Chcm. Phys. 1964, 41, 3199. 

This gives J = 0.4964{, for the starting value of {. If the orbital 
exponent is now decreased to { = 2.000, we calculate J = 0.4976{, 
the correct value. We would incorrectly assume J is still equal 
to 0.49643: 

The error of - 0 . 0 0 1 2 ~  is multiplied by 2, since there are two 
Is electrons. For sulfur the error due to the Is electron can be 
ignored, but not the 2s and 2p shell error. The error per electron 
is only half as great per electron, but there are eight electrons in 
n = 2. 

For selenium and arsenic, no attempt was made to estimate 
the error, because of the uncertainties in the outermost orbitals. 
Small corrections were made in all other cases. 

(17) Huheey, J. E. J .  Phys. Chem. 1965, 69, 3284. 
(18) Komorowski, L. Chem. Phys. 1987, 114, 55.  


